AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System

Author:

Kim Jingyeom,Lee JoohyungORCID,Kim Taeyeon

Abstract

This paper presents a novel adaptive object movement and motion tracking (AdaMM) framework in a hierarchical edge computing system for achieving GPU memory footprint reduction of deep learning (DL)-based video surveillance services. DL-based object movement and motion tracking requires a significant amount of resources, such as (1) GPU processing power for the inference phase and (2) GPU memory for model loading. Despite the absence of an object in the video, if the DL model is loaded, the GPU memory must be kept allocated for the loaded model. Moreover, in several cases, video surveillance tries to capture events that rarely occur (e.g., abnormal object behaviors); therefore, such standby GPU memory might be easily wasted. To alleviate this problem, the proposed AdaMM framework categorizes the tasks used for the object movement and motion tracking procedure in an increasing order of the required processing and memory resources as task (1) frame difference calculation, task (2) object detection, and task (3) object motion and movement tracking. The proposed framework aims to adaptively release the unnecessary standby object motion and movement tracking model to save GPU memory by utilizing light tasks, such as frame difference calculation and object detection in a hierarchical manner. Consequently, object movement and motion tracking are adaptively triggered if the object is detected within the specified threshold time; otherwise, the GPU memory for the model of task (3) can be released. Moreover, object detection is also adaptively performed if the frame difference over time is greater than the specified threshold. We implemented the proposed AdaMM framework using commercial edge devices by considering a three-tier system, such as the 1st edge node for both tasks (1) and (2), the 2nd edge node for task (3), and the cloud for sending a push alarm. A measurement-based experiment reveals that the proposed framework achieves a maximum GPU memory reduction of 76.8% compared to the baseline system, while requiring a 2680 ms delay for loading the model for object movement and motion tracking.

Funder

Ministry of Science and ICT, South Korea

Gachon University research fund of 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3