A Lightweight Automatic Wildlife Recognition Model Design Method Mitigating Shortcut Learning

Author:

Zhong Yujie1,Li Xiao1,Xie Jiangjian12ORCID,Zhang Junguo12ORCID

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University, Beijing 100083, China

Abstract

Recognizing wildlife based on camera trap images is challenging due to the complexity of the wild environment. Deep learning is an optional approach to solve this problem. However, the backgrounds of images captured from the same infrared camera trap are rather similar, and shortcut learning of recognition models occurs, resulting in reduced generality and poor recognition model performance. Therefore, this paper proposes a data augmentation strategy that integrates image synthesis (IS) and regional background suppression (RBS) to enrich the background scene and suppress the existing background information. This strategy alleviates the model’s focus on the background, guiding it to focus on the wildlife in order to improve the model’s generality, resulting in better recognition performance. Furthermore, to offer a lightweight recognition model for deep learning-based real-time wildlife monitoring on edge devices, we develop a model compression strategy that combines adaptive pruning and knowledge distillation. Specifically, a student model is built using a genetic algorithm-based pruning technique and adaptive batch normalization (GA-ABN). A mean square error (MSE) loss-based knowledge distillation method is then used to fine-tune the student model so as to generate a lightweight recognition model. The produced lightweight model can reduce the computational effort of wildlife recognition with only a 4.73% loss in accuracy. Extensive experiments have demonstrated the advantages of our method, which is beneficial for real-time wildlife monitoring with edge intelligence.

Funder

Fundamental Research Funds for the Central Universities

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3