Analysis and Design of a CMOS Ultra-High-Speed Burst Mode Imager with In-Situ Storage Topology Featuring In-Pixel CDS Amplification

Author:

Wu Linkun,San Segundo Bello David,Coppejans Philippe,Craninckx Jan,Süss Andreas,Rosmeulen Maarten,Wambacq PietORCID,Borremans Jonathan

Abstract

This paper presents an in-situ storage topology for ultra-high-speed burst mode imagers, enabling low noise operation while keeping a high frame depth. The proposed pixel architecture contains a 4T pinned photodiode, a correlated double sampling (CDS) amplification stage, and an in-situ memory bank. Focusing on the sampling noise, the system level trade-off of the proposed pixel architecture is discussed, showing its advantages on the noise, power, and scaling capability. Integrated with an AC coupling CDS stage, the amplification is obtained by exploiting the strong capacitance to the voltage relation of a single NMOS transistor. A comprehensive noise model is developed for optimizing the trade-off between the area and noise. As a proof-of-concept, a prototype imager with a 30 µm pixel pitch was fabricated in a CMOS 130 nm technology. A 108-cell memory bank is implemented allowing dense layout and parallel readout. Two types of CDS amplification stages were investigated. Despite the limited memory capacitance of 10 fF/cell, the photon transfer curves of both pixel types were measured over different operation speeds up to 20 Mfps showing a noise performance of 8.4 e−.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMOS sensor for subnanosecond integrated Streak camera;Unconventional Optical Imaging IV;2024-06-18

2. Ultrafast radiographic imaging and tracking: An overview of instruments, methods, data, and applications;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

3. Design and Characterization of a Burst Mode 20 Mfps Low Noise CMOS Image Sensor;Sensors;2023-07-13

4. All-fiber high-speed image detection enabled by deep learning;Nature Communications;2022-03-17

5. A pipeline row operation method of CMOS image sensors;IEICE Electronics Express;2021-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3