Environmental Impact Assessment of Transportation Infrastructure in the Life Cycle: Case Study of a Fast Track Transportation Project in China

Author:

Li Hui,Deng Quanxue,Zhang Jingxiao,Olubunmi Olanipekun AyokunleORCID,Lyu Sainan

Abstract

The transportation sector generates enormous amount of environmental emission. This study aims to assess the environmental impact of the environmental emissions in a transportation infrastructure project life cycle. Using the fast track transportation project in China as a case study, the materials used and the energy consumed over the life cycle were converted into environmental emissions. The life cycle of fast track transportation project was divided into three phases including construction, maintenance and repair, and demolition phases. Both qualitative and quantitative method were applied to explore the environmental impact of transportation project. The life cycle assessment (LCA) method was used for the development environmental impact assessment (EIA) model to analyze the contribution of each process in the transportation project life cycle. The empirical results show that the construction phase has the highest environmental impact (62.7%) in the fast track transportation project life cycle, followed by the demolition (35.8%) and maintenance phases (1.7%). Among the materials used in the fast track transportation project, steel has the highest proportion of environmental impact in the construction phase (55.5%). This indicates the enormous environmental impact of the construction phase in fast track transportation project life cycle results from the use of steel material. This study contributes to reducing environmental emissions by revealing the greatest phase of environmental impact and material-source of environmental impact over the life cycle in a transportation infrastructure project.

Funder

National Natural Science Foundation of China

Humanity and Social Science Program Foundation of the Ministry of Education of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3