Enthalpies of Hydrate Formation from Hydrate Formers Dissolved in Water

Author:

Kvamme Bjørn

Abstract

The international interest in the energy potential related to the huge amounts of methane trapped in the form of hydrates is rapidly increasing. Unlike conventional hydrocarbon sources these natural gas hydrate deposits are widely spread around the world. This includes countries which have limited or no conventional hydrocarbon sources, like for instance Japan. A variety of possible production methods have been proposed during the latest four decades. The pressure reduction method has been dominant in terms of research efforts and associated investments in large scale pilot test studies. Common to any feasible method for producing methane from hydrates is the need for transfer of heat. In the pressure reduction method necessary heat is normally expected to be supplied from the surrounding formation. It still remain, however, unverified whether the capacity, and heat transport capabilities of surrounding formation, will be sufficient to supply enough heat for a commercial production based on reduction in pressure. Adding heat is very costly. Addition of limited heat in critical areas (regions of potential freezing down) might be economically feasible. This requires knowledge about enthalpies of hydrate dissociation under various conditions of temperature and pressure. When hydrate is present in the pores then it is the most stable phase for water. Hydrate can then grow in the concentration range in between liquid controlled solubility concentrations, and the minimum concentration of hydrate in water needed to keep the hydrate stable. Every concentration in that range off concentrations results unique free energy and enthalpy of the formed hydrate. Similarly for hydrate dissociation towards water containing less hydrate former than the stability limit. Every outside liquid water concentration results in unique enthalpy changes for hydrate dissociation. There are presently no other available calculation approaches for enthalpy changes related to these hydrate phase transitions. The interest of using CO2 for safe storage in the form of hydrate, and associated CH4 release, is also increasing. The only feasible mechanism in this method involves the formation of new CO2 hydrate, and associated release of heat which assist in dissociating the in situ CH4 hydrate. Very limited experimental data is available for heats of formation (and dissociation), even for CH4. And most experimental data are incomplete in the sense that associated water/hydrate former rate are often missing or guessed. Thermodynamic conditions are frequently not precisely defined. Although measured hydrate equilibrium pressure versus temperature curves can be used there is still a need for additional models for volume changes, and ways to find other information needed. In this work we propose a simple and fairly direct scheme of calculating enthalpies of formation and dissociation using residual thermodynamics. This is feasible since also hydrate can be described by residual thermodynamics though molecular dynamics simulations. The concept is derived and explained in detail and also compared to experimental data. For enthalpy changes related to hydrate formation from water and dissolved hydrate formers we have not found experimental data to compare with. To our knowledge there are no other alternative methods available for calculating enthalpy changes for these types of hydrate phase transitions. And there are no limits in the theory for which hydrate phase transitions that can be described as long as chemical potentials for water and hydrate formers in the relevant phases are available from theoretical modeling and/or experimental information.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Oral Presentation at Nanotechnology and Nano-Geoscience in Oil and Gas Industry, 4–8 March 2014https://connect.spe.org/events/eventdescription?CalendarEventKey=7b08d694-1554-4e55-a2ce-8f5538b723fc

2. Recovering Methane from Solid Methane Hydrate with Carbon Dioxide

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3