Space/Interface Charge Analysis of the Multi-Layer Oil Gap and Oil Impregnated Pressboard Under the Electrical-Thermal Combined Stress

Author:

Zou Runhao,Hao JianORCID,Liao Ruijin

Abstract

In oil-paper insulation systems, it is easy to accumulate space/interface charge under a direct current (DC) electrical field. At present, direct measurement of space/interface charge for a thick multi-layer insulation system is not possible. It is necessary to study the multi-layer oil-paper insulation system via simulation method. In this paper, the space/interface charge simulation based on the bipolar charge transport model and a simulation parameter using FEM for the multi-layer oil–paper insulation system was proposed. The influence of electrical field strength, temperature, and the combined influence of the electrical field strength and temperature on the space/interface charge behaviors were analyzed, respectively. A new method for calculating the space/interface charge density and the total charge quantity of the multi-layer oil-paper insulation under the combined action of electrical field strength and temperature was presented. Results show that the interface charge density absolute value and the total charge quantity at steady state both increases with the electrical field strength and temperature in an exponential way, respectively. Besides, temperature has a more significant influence on the charge density and the total charge quantity than the electrical field strength. The electrical field strength–temperature shifting factor αT’ was introduced for the translation of the charge density curves or the total charge quantity curves to construct the charge density main curve or the total charge quantity main curve under the combined action of electrical field strength and temperature. The equations for calculating the charge density or the total charge quantity of the multi-layer oil-paper insulation was provided, which could be used to calculate the charge density or the total charge quantity under the combined action of electrical field strength and temperature.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Chongqing Special Funding Project for Post-Doctoral

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3