The Percolation Properties of Electrical Conductivity and Permeability for Fractal Porous Media

Author:

Meng He,Shi Qiang,Liu Tangyan,Liu FengXin,Chen Peng

Abstract

Many cases have indicated that the conductivity and permeability of porous media may decrease to zero at a nonzero percolation porosity instead of zero porosity. However, there is still a lack of a theoretical basis for the percolation mechanisms of the conductivity and permeability. In this paper, the analytical percolation expressions of both conductivity and permeability are derived based on fractal theory by introducing the critical porosity. The percolation models of the conductivity and permeability were found to be closely related to the critical porosity and microstructural parameters. The simulation results demonstrated that the existence of the critical could lead to the non-Archie phenomenon. Meanwhile, the increasing critical porosity could significantly decrease the permeability and the conductivity at low porosity. Besides, the complex microstructure could result in more stagnant pores and a higher critical porosity. This study proves the importance of the critical porosity in accurately evaluating the conductivity and permeability, and reveals the percolation mechanisms of the conductivity and permeability in complex reservoirs. By comparing the predicted conductivity and permeability with the available experimental data, the validity of the proposed percolation models is verified.

Funder

National 863 Program of China

National Natural Science Foundation of China

National Key Technology Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3