A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime

Author:

Kelesidis Georgios A.,Kholghy M. RezaORCID

Abstract

Nanoparticle agglomeration in the transition regime (e.g. at high pressures or low temperatures) is commonly simulated by population balance models for volume-equivalent spheres or agglomerates with a constant fractal-like structure. However, neglecting the fractal-like morphology of agglomerates or their evolving structure during coagulation results in an underestimation or overestimation of the mean mobility diameter, dm, by up to 93 or 49%, repectively. Here, a monodisperse population balance model (MPBM) is interfaced with robust relations derived by mesoscale discrete element modeling (DEM) that account for the realistic agglomerate structure and size distribution during coagulation in the transition regime. For example, the DEM-derived collision frequency, β, for polydisperse agglomerates is 82 ± 35% larger than that of monodisperse ones and in excellent agreement with measurements of flame-made TiO2 nanoparticles. Therefore, the number density, NAg, mean, dm, and volume-equivalent diameter, dv, estimated here by coupling the MPBM with this β and power laws for the evolving agglomerate morphology are on par with those obtained by DEM during the coagulation of monodisperse and polydisperse primary particles at pressures between 1 and 5 bar. Most importantly, the MPBM-derived NAg, dm, and dv are in excellent agreement with the data for soot coagulation during low temperature sampling. As a result, the computationally affordable MPBM derived here accounting for the realistic nanoparticle agglomerate structure can be readily interfaced with computational fluid dynamics in order to accurately simulate nanoparticle agglomeration at high pressures or low temperatures that are present in engines or during sampling and atmospheric aging.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Swiss National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3