Author:
Li Xiaojie,Li Xin,Zuo Pei,Chen Xiaozhe,Liang Misheng,Ma Le
Abstract
TiO2 is popular in photocatalytic degradation dye pollutants due to its abundance and its stability under photochemical conditions. Au loaded TiO2 can achieve efficient absorption of visible light and deal with the problem of low conversion efficiency for solar energy of TiO2. This work presents a new strategy to prepare Au nanoparticles-loaded TiO2 composites through electric−field−assisted temporally−shaped femtosecond laser liquid-phase ablation of Au3+ and amorphous TiO2. By adjusting the laser pulse delay and electric field parameters, gold nanoparticles with different structures can be obtained, such as nanospheres, nanoclusters, and nanostars (AuNSs). AuNSs can promote the local crystallization of amorphous TiO2 in the preparation process and higher free electron density can also be excited to work together with the mixed crystalline phase, hindering the recombination between carriers and holes to achieve efficient photocatalytic degradation. The methylene blue can be effectively degraded by 86% within 30 min, and much higher than the 10% of Au nanoparticles loaded amorphous TiO2. Moreover, the present study reveals the crystallization process and control methods for preparing nanoparticles by laser liquid ablation, providing a green and effective new method for the preparation of high-efficiency photocatalytic materials.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献