Experimental and Numerical Studies of Gas Permeability through Orthogonal Networks for Isotropic Porous Material

Author:

Wałowski GrzegorzORCID

Abstract

With regard to the problem of gas flow through isotropic porous deposits, the issues were considered in the category of description of gas movement mechanisms for structural models of the skeleton. As part of experimental tests of gas permeability through porous material in the form of polyamide, the numerical simulation method was used, using the k–ε turbulence model. The analysis of hydrodynamic phenomena occurring in the porous material made it possible to confront experimental research with numerical calculations. The analysis shows that, for a porous polyamide bed, there is a certain limit range of gas velocity (10−4–1) ms−1 at which flow resistance is the lowest. On the other hand, the highest value of the flow resistance is gradually achieved in the range of gas velocity (1–10) ms−1. This is due to the different structure of the isotropic polyamide material. The validation of the numerical model with experimental data indicates the validity of the adopted research methodology. It was found that the permeability characteristics of the tested porous material practically did not depend on the direction of gas flow. For porous polyamide, the permeability characteristic is non-linear, which, from the point of view of the measurements carried out, indicates the advantage of turbulent gas flow over its laminar movement. The novelty of the article is a proprietary method of measuring gas permeability for a cube-shaped sample made of a material constituting a sinter of spherical particles of equal dimensions. The method enables the determination of gas flow (in each flow direction) in microchannels forming an orthogonal network, characteristic of isotropic materials.

Funder

National Center for Research and Development implemented under the BIOSTRATEG program,

Publisher

MDPI AG

Subject

General Materials Science

Reference103 articles.

1. Mass Movement in Porous Bodies;Aksielrud,1987

2. Prociеssy piеriеnosа w niеodnorodnych sriеdаch;Dulniеw;Eniеrgoаtomizdаt,1991

3. Interpretation of gas flow mechanisms in anisotropic porous materials in phenomenological terms;Wałowski;Int. J. Curr. Res.,2018

4. Application of the Potential Concept to Soil Water Equilibrium and Transport

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3