Application of a Developed Numerical Model for Surfactant Flushing Combined with Intermittent Air Injection at Field Scale

Author:

Lee Hwan,Suk HeejunORCID,Chen Jui-Sheng,Park Eungyu

Abstract

Surfactant flushing with intermittent air injection, referred to as enhanced flushing, has been proposed at a site in Korea contaminated by military activity to overcome the difficulty of treatment caused by a layered geological structure. In this study, we developed a simple numerical model for exploring the effects of various physical and chemical processes associated with enhanced flushing on pollutant removal efficiency and applied it in a field-scale test. This simple numerical model considers only enhanced hydraulic conductivity rather than all of the interacting parameters associated with the complex chemical and physical processes related to air and surfactant behavior during enhanced flushing treatment. In the numerical experiment, the removal efficiency of residual non-aqueous phase liquid (NAPL) was approximately 12% greater with enhanced, rather than conventional, flushing because the hydraulic conductivity of the low-permeability layer was enhanced 5-fold, thus accelerating surfactant transport in the low-permeability layer and facilitating enhanced dissolution of residual NAPL. To test whether the enhanced flushing method is superior to conventional flushing, as observed in the field-scale test, successive soil flushing operations were simulated using the newly developed model, and the results were compared to field data. Overall, the simulation results aligned well with the field data.

Funder

Korea Environmental Industry & Technology Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3