Iterative List Patterned Reed-Muller Projection Detection-Based Packetized Unsourced Massive Random Access

Author:

Xie Wenjiao1ORCID,Tian Runhe2ORCID,Zhang Huisheng1

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China

2. Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

In this paper, we consider a slot-controlled coded compressed sensing protocol for unsourced massive random access (URA) that concatenates a shared patterned Reed–Muller (PRM) inner codebook to an outer error-correction code. Due to the limitations of the geometry-based decoding algorithm in single-sequence settings and due to the message interference that may result in decreased decoding performance under multi-sequence circumstances, a list PRM projection algorithm and an iterative list PRM projection algorithm are proposed to supplant the signal detector associated with the inner PRM sequences in this paper. In detail, we first propose an enhanced path-saving algorithm, called list PRM projection detection, for use in single-user scenarios that maintains multiple candidates during the first few layers so as to remedy the risk of spreading errors. On this basis, we further propose an iterative list PRM projection algorithm for use in multi-user scenarios. The vectors for PRM codes and channel coefficients are jointly detected in an iterative manner, which offers significant improvements regarding the convergence rate for signal recovery. Furthermore, the performances of the proposed algorithms are analyzed mathematically, and we verify that the theoretical simulations are consistent with the numerical simulations. Finally, we concatenate the inner PRM codes that employ iterative list detection in two practical error-correction outer codes. According to the simulation results, we conclude that the packetized URA with the proposed iterative list projection detection works better than benchmarks in terms of the number of active users it can support in each slot and the amount of energy needed per bit to meet an expected error probability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3