Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array

Author:

Yildiz Gulsah1ORCID,Farhat Iman2ORCID,Farrugia Lourdes2ORCID,Bonello Julian2ORCID,Zarb-Adami Kristian2,Sammut Charles V.2ORCID,Yilmaz Tuba13ORCID,Akduman Ibrahim13ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey

2. Department of Physics, University of Malta, MSD 2080 Msida, Malta

3. Mitos Medical Technologies, 34467 Istanbul, Turkey

Abstract

In microwave hyperthermia tumor therapy, electromagnetic waves focus energy on the tumor to elevate the temperature above its normal levels with minimal injury to the surrounding healthy tissue. Microwave hyperthermia applicator design is important for the effectiveness of the therapy and the feasibility of real-time application. In this study, the potential of using fractal octagonal ring antenna elements as a dipole antenna array and as a connected array at 2.45 GHz for breast tumor hyperthermia application was investigated. Microwave hyperthermia treatment models consisting of different fractal octagonal ring antenna array designs and a breast phantom are simulated in COMSOL Multiphysics to obtain the field distributions. The antenna excitation phases and magnitudes are optimized using the global particle swarm algorithm to selectively increase the specific absorption rate at the target region while minimizing hot spots in other regions within the breast. Specific absorption rate distributions, obtained inside the phantom, are analyzed for each proposed microwave hyperthermia applicator design. The dipole fractal octagonal ring antenna arrays are comparatively assessed for three different designs: circular, linear, and Cross—array. The 16-antenna dipole array performance was superior for all three 1-layer applicator designs, and no distinct difference was found between 16-antenna circular, linear, or cross arrays. Two-layer dipole arrays have better performance in the deep-tissue targets than one-layer arrays. The performance of the connected array with a higher number of layers exceeds the performance of the dipole arrays in the superficial regions, while they are comparable for deep regions of the breast. The 1-layer 12-antenna circular FORA dipole array feasibility as a microwave hyperthermia applicator was experimentally shown.

Funder

COST Action grant agreement

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3