Abstract
Statistical learning is an innate function in the brain and considered to be essential for producing and comprehending structured information such as music. Within the framework of statistical learning the brain has an ability to calculate the transitional probabilities of sequences such as speech and music, and to predict a future state using learned statistics. This paper computationally examines whether and how statistical learning and knowledge partially contributes to musical representation in jazz improvisation. The results represent the time-course variations in a musician’s statistical knowledge. Furthermore, the findings show that improvisational musical representation might be susceptible to higher- but not lower-order statistical knowledge (i.e., knowledge of higher-order transitional probability). The evidence also demonstrates the individuality of improvisation for each improviser, which in part depends on statistical knowledge. Thus, this study suggests that statistical properties in jazz improvisation underline individuality of musical representation.