Therapeutic Effect of Padina arborescens Extract on a Cell System Model for Parkinson’s Disease

Author:

Ho Dong Hwan1ORCID,Kim Hyejung1,Nam Daleum1ORCID,Seo Mi Kyoung2ORCID,Park Sung Woo23ORCID,Kim Dong-Kyu4,Son Ilhong15ORCID

Affiliation:

1. InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea

2. Paik Institute for Clinical Research, Inje University College of Medicine, Busan-si 47392, Republic of Korea

3. Department of Convergence Biomedical Science, Inje University College of Medicine, Busan-si 47392, Republic of Korea

4. Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul 07345, Republic of Korea

5. Sanbon Medical Center, Department of Neurology, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea

Abstract

Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are involved in the pathogenesis of Parkinson’s disease. The activity of LRRK2 in microglial cells is associated with neuroinflammation, and LRRK2 inhibitors are crucial for alleviating this neuroinflammatory response. α-synuclein contributes to oxidative stress in the dopaminergic neuron and neuroinflammation through Toll-like receptors in microglia. In this study, we investigated the effect of the marine alga Padina arborescens on neuroinflammation by examining LRRK2 activation and the aggregation of α-synuclein. P. arborescens extract inhibits LRRK2 activity in vitro and decreases lipopolysaccharide (LPS)-induced LRRK2 upregulation in BV2, a mouse microglial cell line. Treatment with P. arborescens extract decreased tumor necrosis factor-α (TNF-α) gene expression by LPS through LRRK2 inhibition in BV2. It also attenuated TNF-α gene expression, inducible nitric oxide synthase, and the release of TNF-α and cellular nitric oxide in rat primary microglia. Furthermore, P. arborescens extract prevented rotenone (RTN)-induced oxidative stress in primary rat astrocytes and inhibited α-synuclein fibrilization in an in vitro assay using recombinant α-synuclein and in the differentiated human dopaminergic neuronal cell line SH-SY5Y (dSH). The extract increased lysosomal activity in dSH cells. In addition, P. arborescens extract slightly prolonged the lifespan of Caenorhabditis elegans, which was reduced by RTN treatment.

Funder

Wonkwang university

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3