The Effect of Electroslag Remelting on the Microstructure and Mechanical Properties of CrNiMoWMnV Ultrahigh-Strength Steels

Author:

Ali MohammedORCID,Porter DavidORCID,Kömi Jukka,Eissa Mamdouh,El Faramawy Hoda,Mattar TahaORCID

Abstract

The effect of electroslag remelting (ESR) with CaF2-based synthetic slag on the microstructure and mechanical properties of three as-quenched martensitic/martensitic-bainitic ultrahigh-strength steels with tensile strengths in the range of 1250–2000 MPa was investigated. Ingots were produced both without ESR, using induction furnace melting and casting, and with subsequent ESR. The cast ingots were forged at temperatures between 1100 and 950 °C and air cooled. Final microstructures were investigated using laser scanning confocal microscopy, field emission scanning electron microscopy, electron backscatter diffraction, electron probe microanalysis, X-ray diffraction, color etching, and micro-hardness measurements. Mechanical properties were investigated through measurement of hardness, tensile properties and Charpy-V impact toughness. The microstructures of the investigated steels were mainly auto-tempered martensite in addition to small fractions of retained austenite and bainite. Due to the consequences of subtle modifications in chemical composition, ESR had a considerable impact on the final microstructural features: Prior austenite grain, effective martensite grain, and lath sizes were refined by up to 52%, 38%, and 28%, respectively. Moreover, the 95th percentiles in the cumulative size distribution of the precipitates decreased by up to 18%. However, ESR had little, if any, the effect on microsegregation. The variable effects of ESR on mechanical properties and how they depend on the initial steel composition are discussed.

Funder

Ministry of Higher Education, Egypt

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference52 articles.

1. The Physical Metallurgy of Microalloyed Steels;Gladman,1997

2. Effect of Heat Treatment on Corrosion and Stress Corrosion Cracking of S32205 Duplex Stainless Steel in Caustic Solution

3. Development of 0.2 C-CrMnMoV Ultra High Strength Steel;Maity;Int. J. Sci. Eng. Technol.,2014

4. Development of Ultrahigh Strength Low Alloy Steel through Electroslag Refining Process

5. Very strong bainite

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3