Overlapping Limitations for ps-Pulsed LIFT Printing of High Viscosity Metallic Pastes

Author:

Munoz-Martin DavidORCID,Chen Yu,Morales Miguel,Molpeceres CarlosORCID

Abstract

Laser-induced forward transfer (LIFT) technique has been used for printing a high viscosity (250 Pa·s) commercial silver paste with micron-size particles (1–4 µm). Volumetric pixels (voxels) transferred using single ps laser pulses are overlapped in order to obtain continuous metallic lines. However, interference problems between successive voxels is a major issue that must be solved before obtaining lines with good morphologies. The effects of the laser pulse energy, thickness of the donor paste film, and distance between successive voxels on the morphology of single voxels and lines are discussed. Due to the high viscosity of the paste, the void in the donor film after a printing event remains, and it negatively affects the physical transfer mechanism of the next laser pulses. When two laser pulses are fired at a short distance, there is no transfer at all. Only when the pulses are separated by a distance long enough to avoid interference but short enough to allow overlapping (≈100 µm), is it possible to print continuous lines in a single step. Finally, the knowledge obtained has allowed the printing of silver lines at high speeds (up to 60 m/s).

Funder

FP7 Information and Communication Technologies

Comunidad de Madrid

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3