Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking

Author:

Andersson JoakimORCID

Abstract

Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However, electrolysis is an electricity-intensive process. Therefore, it is preferable that H2 is predominantly produced during times of low electricity prices, which is enabled by the storage of H2. This work compares the integration of H2 storage in four liquid carriers, methanol (MeOH), formic acid (FA), ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT), in H-DR processes. In contrast to conventional H2 storage methods, these carriers allow for H2 storage in liquid form at moderate overpressures, reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes, often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes, MeOH-based H2 storage may also be an attractive option to the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3, H18-DBT) and higher investment costs. However, for the use of MeOH in an H-DR process to be practically feasible, questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered.

Funder

Swedish Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference131 articles.

1. CO2 Capture and Utilization in Cement and Iron and Steel Industries

2. Technical Summary: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty;Allen,2019

3. Mitigation of climate change,2014

4. Green Hydrogen as Decarbonization Element for the Steel Industry

5. Toward a Fossil Free Future with HYBRIT: Development of Iron and Steelmaking Technology in Sweden and Finland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3