Effects of Trapping Characteristics on Space Charge and Electric Field Distributions in HVDC Cable under Electrothermal Stress

Author:

Tian Fuqiang,Zhang ShutingORCID,Hou Chunyi

Abstract

Space charge behavior has a strong impact on the long-term operation reliability of high voltage–direct current (HVDC) cables. This study intended to reveal the effect of trap density and depth on the space charge and electric field evolution behavior in HVDC cable insulation under different load currents and voltages by combined numerical bipolar charge transport (BCT) and thermal field simulation. The results show that when the load current is 1800 A (normal value), the temperature difference between the inside and the outside of the insulation is 20 °C, space charge accumulation and electric field distortion become more serious with the increase in the trap depth (Et) from 0.80 to 1.20 eV for the trap densities (Nt) of 10 × 1019 and 80 × 1019 m−3, and become more serious with the increase in Nt from 10 × 1019 to 1000 × 1019 m−3 for Et = 0.94 eV. Simultaneously decreasing trap depth and trap density (such as Et = 0.80 eV, Nt = 10 × 1019 m−3) or increasing trap depth and trap density (such as Et = 1.20 eV, Nt = 1000 × 1019 m−3), space charge accumulation can be effectively suppressed along with capacitive electric field distribution for different load currents (1800 A, 2100 A and 2600 A) and voltages (320 kV and 592 kV). Furthermore, we can draw the conclusion that increasing bulk conduction current by simultaneously decreasing the trap depth and density or decreasing injection current from conductor by regulating the interface electric field via simultaneously increasing the trap depth and density can both effectively suppress space charge accumulations in HVDC cables. Thus, space charge and electric field can be readily regulated by the trap characteristics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Application and research progress of HVDC XLPE cables;Du;High Volt. Eng.,2017

2. Extruded Cables for High Voltage Direct Current Transmission: Advances in Research and Development;Mazzanti,2013

3. Coupled Simulation on Electro-thermal-fluid Multiple Physical Fields of HVDC Submarine Cable;Hao;High Volt. Eng.,2017

4. Reviews on Research Progress and Key Technology in Extruded Cables for HVDC Trans-mission;He;High Volt. Eng.,2015

5. Fundamentals of HVDC Cable Transmission;Mazzanti,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3