Influence of the Fin Shape on Heat Transport in Phase Change Material Heat Sink with Constant Heat Loads

Author:

Bondareva Nadezhda S.ORCID,Ghalambaz MohammadORCID,Sheremet Mikhail A.

Abstract

Nowadays, the heat transfer enhancement in electronic cabinets with heat-generating elements can be achieved using the phase change materials and finned heat sink. The latter allows to improve the energy transference surface and to augment the cooling effects for the heat sources. The present research deals with numerical analysis of phase change material behavior in an electronic cabinet with an energy-generating element. For an intensification of heat removal, the complex finned heat sink with overall width of 10 cm was introduced, having the complicated shape of the fins with width of 0.33 cm and height H = 5 cm. The fatty acid with melting temperature of 46 °C was considered as a phase change material. The considered two-dimensional challenge was formulated employing the non-primitive variables and solved using the finite difference method. Impacts of the volumetric heat flux of heat-generating element and sizes of the fins on phase change material circulation and energy transference within the chamber were studied. It was shown that the presence of transverse ribs makes it possible to accelerate the melting process and reduce the source temperature by more than 12 °C at a heat load of 1600 W/m. It should also be noted that the nature of melting depends on the hydrodynamics of the melt, so the horizontal partitions reduce the intensity of convective heat transfer between the upper part of the region and the lower part.

Funder

Council on grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3