Fault Detection and Diagnosis Methods for Fluid Power Pitch System Components—A Review

Author:

Asmussen Magnus F.ORCID,Liniger JesperORCID,Pedersen Henrik C.ORCID

Abstract

Wind turbines have become a significant part of the global power production and are still increasing in capacity. Pitch systems are an important part of modern wind turbines where they are used to apply aerodynamic braking for power regulation and emergency shutdowns. Studies have shown that the pitch system is responsible for up to 20% of the total down time of a wind turbine. Reducing the down time is an important factor for decreasing the total cost of energy of wind energy in order to make wind energy more competitive. Due to this, attention has come to condition monitoring and fault detection of such systems as an attempt to increase the reliability and availability, hereby the reducing the turbine downtime. Some methods for fault detection and condition monitoring of fluid power systems do exists, though not many are used in today’s pitch systems. This paper gives an overview of fault detection and condition monitoring methods of fluid power systems similar to fluid power pitch systems in wind turbines and discuss their applicability in relation to pitch systems. The purpose is to give an overview of which methods that exist and to find areas where new methods need to be developed or existing need to be modified. The paper goes through the most important components of a pitch system and discuss the existing methods related to each type of component. Furthermore, it is considered if existing methods can be used for fluid power pitch systems for wind turbine.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Global Wind Report—Annual Market Update 2017,2018

2. https://windeurope.org/wp-content/uploads/files/about-wind/reports/LEANWIND-Driving-cost-reductions-in-offshore.pdf

3. Condition monitoring and fault detection of wind turbines and related algorithms: A review

4. Condition monitoring of wind turbines: Techniques and methods

5. Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines;Carroll;arXiv,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3