Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization

Author:

Junne TobiasORCID,Cao Karl-KiênORCID,Miskiw Kim Kira,Hottenroth Heidi,Naegler TobiasORCID

Abstract

We integrate life cycle indicators for various technologies of an energy system model with high spatiotemporal detail and a focus on Europe and North Africa. Using multi-objective optimization, we calculate a pareto front that allows us to assess the trade-offs between system costs and life cycle greenhouse gas (GHG) emissions of future power systems. Furthermore, we perform environmental ex-post assessments of selected solutions using a broad set of life cycle impact categories. In a system with the least life cycle GHG emissions, the costs would increase by ~63%, thereby reducing life cycle GHG emissions by ~82% compared to the cost-optimal solution. Power systems mitigating a substantial part of life cycle GHG emissions with small increases in system costs show a trend towards a deployment of wind onshore, electricity grid and a decline in photovoltaic plants and Li-ion storage. Further reductions are achieved by the deployment of concentrated solar power, wind offshore and nuclear power but lead to considerably higher costs compared to the cost-optimal solution. Power systems that mitigate life cycle GHG emissions also perform better for most impact categories but have higher ionizing radiation, water use and increased fossil fuel demand driven by nuclear power. This study shows that it is crucial to consider upstream GHG emissions in future assessments, as they represent an inheritable part of total emissions in ambitious energy scenarios that, so far, mainly aim to reduce direct CO2 emissions.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3