Power Series Expansions of Real Powers of Inverse Cosine and Sine Functions, Closed-Form Formulas of Partial Bell Polynomials at Specific Arguments, and Series Representations of Real Powers of Circular Constant

Author:

Qi Feng123ORCID

Affiliation:

1. School of Mathematics and Physics, Hulunbuir University, Hulunbuir 021008, China

2. Independent Researcher, University Village, Dallas, TX 75252-8024, USA

3. School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China

Abstract

In this paper, by means of the Faà di Bruno formula, with the help of explicit formulas for partial Bell polynomials at specific arguments of two specific sequences generated by derivatives at the origin of the inverse sine and inverse cosine functions, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes power series expansions for real powers of the inverse cosine (sine) functions and the inverse hyperbolic cosine (sine) functions. By comparing different series expansions for the square of the inverse cosine function and for the positive integer power of the inverse sine function, the author not only finds infinite series representations of the circular constant π and its real powers, but also derives several combinatorial identities involving central binomial coefficients and the Stirling numbers of the first kind.

Publisher

MDPI AG

Reference41 articles.

1. Temme, N.M. (1996). Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley & Sons, Inc.. A Wiley-Interscience Publication.

2. Charalambides, C.A. (2002). Enumerative Combinatorics, Chapman & Hall/CRC.

3. Comtet, L. (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Co.. Revised and Enlarged Edition.

4. Abramowitz, M., and Stegun, I.A. (1992). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc.. Reprint of the 1972 edition.

5. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions;Guo;AIMS Math.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3