Human Motion Enhancement and Restoration via Unconstrained Human Structure Learning

Author:

He Tianjia1,Yang Tianyuan1,Konomi Shin’ichi2ORCID

Affiliation:

1. Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan

2. Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan

Abstract

Human motion capture technology, which leverages sensors to track the movement trajectories of key skeleton points, has been progressively transitioning from industrial applications to broader civilian applications in recent years. It finds extensive use in fields such as game development, digital human modeling, and sport science. However, the affordability of these sensors often compromises the accuracy of motion data. Low-cost motion capture methods often lead to errors in the captured motion data. We introduce a novel approach for human motion reconstruction and enhancement using spatio-temporal attention-based graph convolutional networks (ST-ATGCNs), which efficiently learn the human skeleton structure and the motion logic without requiring prior human kinematic knowledge. This method enables unsupervised motion data restoration and significantly reduces the costs associated with obtaining precise motion capture data. Our experiments, conducted on two extensive motion datasets and with real motion capture sensors such as the SONY (Tokyo, Japan) mocopi, demonstrate the method’s effectiveness in enhancing the quality of low-precision motion capture data. The experiments indicate the ST-ATGCN’s potential to improve both the accessibility and accuracy of motion capture technology.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3