Slider Sheet Detection in Charge-Induction Electrostatic Film Actuators

Author:

Kojima Motoki1,Yoshimoto Shunsuke1ORCID,Yamamoto Akio1ORCID

Affiliation:

1. Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba 277-8563, Japan

Abstract

This work analyzes a built-in slider detection method for a charge-induction type electrostatic film actuator with a high surface-resistance slider. In the detection method, one stator electrode is detached from the parallel driving electrodes and is dedicated to sensing. When a slider with induced charges moves over the sensing electrode, electrostatic induction occurs in the sensing electrode, which causes an electric current. The current is converted to a voltage through a detection resistance, which will be an output of the sensing circuit. This paper provides a framework to analyze the output signal waveform and shows that the waveform consists of two components. One component is caused by driving voltage and appears regardless of the existence of a slider. The other component corresponds to the movement of a slider, which appears only when a slider is moving over the sensing electrode. Therefore, the slider can be detected by monitoring the latter component. The two components generally overlap, which makes the detection of the latter component difficult in some cases. This paper proposes a method to decouple the two components by switching the detection resistance at an appropriate time. These methods are verified using a prototype actuator that has an electrode pitch of 0.6 mm. The actuator was driven with a set of pulse voltages with an amplitude of 1000 V. The experimental results show similar waveforms to the analytical results, verifying the proposed analytical framework. The performance of the sensing method as a proximity sensor was verified in the experiments, and it was confirmed that the slider can be detected when it approaches the sensing electrode within about 3 mm.

Funder

Kawaguchi Electric Works Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3