Effect of Different Raw Material Property for the Fabrication on Al/CNT Nanocomposite Using a Ball Mill with a Discrete Element Method (DEM) Simulation

Author:

Jargalsaikhan Battsetseg,Bor Amgalan,Lee Jehyun,Choi Heekyu

Abstract

Carbon nanotubes (CNTs) have received interest as an attractive reinforcing agent metal matrix composites regarded as an increase to mechanical properties of the final product. Aluminum/carbon nanotubes (Al/CNTs) nanocomposites were observed with different raw material at the optimized experimental condition. In this study, Al-based CNTs composites were three different samples, including un-milled Al, un-milled Al with CNTs, and milled Al with CNTs nanocomposites in the presence of additional CNTs with various experimental conditions while using a traditional ball mill (TBM). The particle morphology and CNT dispersions of milled composites were respectively analysed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM), and the mechanical properties of the fabricated composites were tested. In each sample, CNTs were well dispersed on the surface of Al powder at different experimental conditions for milling in a TBM. The Al/CNTs nanocomposites were processed by compacting, sintering and rolling process. The Vickers hardness was used to characterize the mechanical properties. The hardness of Al/CNTs nanocomposites that were fabricated with milled Al with CNT was higher than the reached to in the nanocomposites prepared with the use of un-milled Al with CNT nanocomposites. Therefore, the discrete element method (DEM) simulation was used to complete quantitative analysis. The flow pattern, impact force, and energy at various experimental conditions are considered. The results of the simulations are compared with experimental data.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3