How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells

Author:

Baldinelli AriannaORCID,Barelli LindaORCID,Bidini Gianni,Cinti GiovanniORCID,Di Michele AlessandroORCID,Mondi Francesco

Abstract

Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these, the access to affordable renewable energy and clean water are overriding, especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets, rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water, the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization, hence scoring a renewable penetration of more than 95%, marginal CO2 emissions (13 g/kWh), and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. U.N. Organization. Agenda 2030—Sustainable Development Goalshttps://unric.org/it/agenda-2030/

2. SDG7: Data And Projections. Access to Affordable: Reliable, Sustainable And Modern Energy For All,2019

3. Africa Energy Outlook. A Focus on the Energy Prospects in Sub-Saharan Africa,2014

4. Africa Energy Outlook Paris,2019

5. Advances in seawater desalination technologies

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3