Laser-Induced Ignition and Combustion Behavior of Individual Graphite Microparticles in a Micro-Combustor

Author:

Wang Yue,Zhang Minqi,Chang Shuhang,Li ShengjiORCID,Huang XuefengORCID

Abstract

Microscale combustion has potential application in a micro power generator. This paper studied the ignition and combustion behavior of individual graphite microparticles in a micro-combustor to explore the utilization of carbon-based fuels at the microscale system. The individual graphite microparticles inside the micro-combustor were ignited by a highly focused laser in an air flow with natural convection at atmospheric temperature and pressure. The results show that the ignition of graphite microparticles was heterogeneous. The particle diameter had a small weak effect on ignition delay time and threshold ignition energy. The micro-combustor wall heat losses had significant effects on the ignition and combustion. During combustion, flame instability, photophoresis, repetitive extinction and reignition were identified. The flame structure was asymmetric, and the fluctuation of flame front and radiation intensity showed combustion instability. Photophoretic force pushed the graphite away from the focal point and resulted in extinction. Owing to large wall heat loss, the flame quickly extinguished. However, the graphite was inductively reignited by laser.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3