Affiliation:
1. Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
2. Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
Abstract
In the current work, copper tungsten oxide (CuWO4) nanoparticles are incorporated with carbon nanofiber (CNF) to form CNF/CuWO4 nanocomposite through a facile hydrothermal method. The prepared CNF/CuWO4 composite was applied to the electrochemical detection of hazardous organic pollutants of 4-nitrotoluene (4-NT). The well-defined CNF/CuWO4 nanocomposite is used as a modifier of glassy carbon electrode (GCE) to form CuWO4/CNF/GCE electrode for the detection of 4-NT. The physicochemical properties of CNF, CuWO4, and CNF/CuWO4 nanocomposite were examined by various characterization techniques, such as X-ray diffraction studies, field emission scanning electron microscopy, EDX-energy dispersive X-ray microanalysis, and high-resolution transmission electron microscopy. The electrochemical detection of 4-NT was evaluated using cyclic voltammetry (CV) the differential pulse voltammetry detection technique (DPV). The aforementioned CNF, CuWO4, and CNF/CuWO4 materials have better crystallinity with porous nature. The prepared CNF/CuWO4 nanocomposite has better electrocatalytic ability compared to other materials such as CNF, and CuWO4. The CuWO4/CNF/GCE electrode exhibited remarkable sensitivity of 7.258 μA μM−1 cm−2, a low limit of detection of 86.16 nM, and a long linear range of 0.2–100 μM. The CuWO4/CNF/GCE electrode exhibited distinguished selectivity, acceptable stability of about 90%, and well reproducibility. Meanwhile, the GCE/CNF/CuWO4 electrode has been applied to real sample analysis with better recovery results of 91.51 to 97.10%.
Funder
Ministry of Science and Technology
National Taipei University of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献