Sparse Reconstruction of Sound Field Using Bayesian Compressive Sensing and Equivalent Source Method

Author:

Xiao Yue1ORCID,Yuan Lei1,Wang Junyu1,Hu Wenxin1,Sun Ruimin1

Affiliation:

1. School of Mechanical Engineering, Nanchang Institute of Technology, Nanchang 330099, China

Abstract

To solve the problem of sound field reconstruction with fewer measurement points, a sound field reconstruction method based on Bayesian compressive sensing is proposed. In this method, a sound field reconstruction model based on a combination of the equivalent source method and sparse Bayesian compressive sensing is established. The MacKay iteration of the relevant vector machine is used to infer the hyperparameters and estimate the maximum a posteriori probability of both the sound source strength and noise variance. The optimal solution for sparse coefficients with an equivalent sound source is determined to achieve the sparse reconstruction of the sound field. The numerical simulation results demonstrate that the proposed method has higher accuracy over the entire frequency range compared to the equivalent source method, indicating a better reconstruction performance and wider frequency applicability with undersampling. Moreover, in environments with low signal-to-noise ratios, the proposed method exhibits significantly lower reconstruction errors than the equivalent source method, indicating a superior anti-noise performance and greater robustness in sound field reconstruction. The experimental results further verify the superiority and reliability of the proposed method for sound field reconstruction with limited measurement points.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3