Non-Hermitian Sensing in Photonics and Electronics: A Review

Author:

De Carlo MartinoORCID,De Leonardis Francesco,Soref Richard A.,Colatorti Luigi,Passaro Vittorio M. N.ORCID

Abstract

Recently, non-Hermitian Hamiltonians have gained a lot of interest, especially in optics and electronics. In particular, the existence of real eigenvalues of non-Hermitian systems has opened a wide set of possibilities, especially, but not only, for sensing applications, exploiting the physics of exceptional points. In particular, the square root dependence of the eigenvalue splitting on different design parameters, exhibited by 2 × 2 non-Hermitian Hamiltonian matrices at the exceptional point, paved the way to the integration of high-performance sensors. The square root dependence of the eigenfrequencies on the design parameters is the reason for a theoretically infinite sensitivity in the proximity of the exceptional point. Recently, higher-order exceptional points have demonstrated the possibility of achieving the nth root dependence of the eigenfrequency splitting on perturbations. However, the exceptional sensitivity to external parameters is, at the same time, the major drawback of non-Hermitian configurations, leading to the high influence of noise. In this review, the basic principles of PT-symmetric and anti-PT-symmetric Hamiltonians will be shown, both in photonics and in electronics. The influence of noise on non-Hermitian configurations will be investigated and the newest solutions to overcome these problems will be illustrated. Finally, an overview of the newest outstanding results in sensing applications of non-Hermitian photonics and electronics will be provided.

Funder

United States Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3