Unsupervised Clustering of Heartbeat Dynamics Allows for Real Time and Personalized Improvement in Cardiovascular Fitness

Author:

Serantoni Cassandra,Zimatore GiovannaORCID,Bianchetti GiadaORCID,Abeltino Alessio,De Spirito MarcoORCID,Maulucci GiuseppeORCID

Abstract

VO2max index has a significant impact on overall health. Its estimation through wearables notifies the user of his level of fitness but cannot provide a detailed analysis of the time intervals in which heartbeat dynamics are changed and/or fatigue is emerging. Here, we developed a multiple modality biosignal processing method to investigate running sessions to characterize in real time heartbeat dynamics in response to external energy demand. We isolated dynamic regimes whose fraction increases with the VO2max and with the emergence of neuromuscular fatigue. This analysis can be extremely valuable by providing personalized feedback about the user’s fitness level improvement that can be realized by developing personalized exercise plans aimed to target a contextual increase in the dynamic regime fraction related to VO2max increase, at the expense of the dynamic regime fraction related to the emergence of fatigue. These strategies can ultimately result in the reduction in cardiovascular risk.

Funder

Regione Lazio

Catholic University of the Sacred Heart

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3