Snow-CLOCs: Camera-LiDAR Object Candidate Fusion for 3D Object Detection in Snowy Conditions

Author:

Fan Xiangsuo12ORCID,Xiao Dachuan1,Li Qi13,Gong Rui1

Affiliation:

1. School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China

2. Guangxi Collaborative Innovation Centre for Earthmoving Machinery, Guangxi University of Science and Technology, Liuzhou 545006, China

3. Key Laboratory of Disaster Prevention & Mitigation and Prestress Technology of Guangxi Colleges and Universities, Liuzhou 545006, China

Abstract

Although existing 3D object-detection methods have achieved promising results on conventional datasets, it is still challenging to detect objects in data collected under adverse weather conditions. Data distortion from LiDAR and cameras in such conditions leads to poor performance of traditional single-sensor detection methods. Multi-modal data-fusion methods struggle with data distortion and low alignment accuracy, making accurate target detection difficult. To address this, we propose a multi-modal object-detection algorithm, Snow-CLOCs, specifically for snowy conditions. In image detection, we improved the YOLOv5 algorithm by integrating the InceptionNeXt network to enhance feature extraction and using the Wise-IoU algorithm to reduce dependency on high-quality data. For LiDAR point-cloud detection, we built upon the SECOND algorithm and employed the DROR filter to remove noise, enhancing detection accuracy. We combined the detection results from the camera and LiDAR into a unified detection set, represented using a sparse tensor, and extracted features through a 2D convolutional neural network to achieve object detection and localization. Snow-CLOCs achieved a detection accuracy of 86.61% for vehicle detection in snowy conditions.

Funder

Guangxi Science and Technology Major Project

Publisher

MDPI AG

Reference42 articles.

1. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Michael, K., Fang, J., Yifu, Z., Wong, C., and Montes, D. (2022). ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo.

2. Wang, C.Y., Yeh, I.H., and Liao, H.Y.M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv.

3. Wang, C.Y., Bochkovskiy, A., and Liao, H.Y.M. (2023, January 17–24). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada.

4. Girshick, R. (2015, January 7–13). Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile.

5. Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2017, January 21–26). Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3