Nonparametric Clustering of Mixed Data Using Modified Chi-Squared Tests

Author:

Xu Yawen,Gao XinORCID,Wang Xiaogang

Abstract

We propose a non-parametric method to cluster mixed data containing both continuous and discrete random variables. The product space of the continuous and discrete sample space is transformed into a new product space based on adaptive quantization on the continuous part. Detection of cluster patterns on the product space is determined locally by using a weighted modified chi-squared test. Our algorithm does not require any user input since the number of clusters is determined automatically by data. Simulation studies and real data analysis results show that our proposed method outperforms the benchmark method, AutoClass, in various settings.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference12 articles.

1. Kaufman, L., and Rousseeuw, P.J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.

2. Model-based Gaussian and non-Gaussian clustering;Banfield;Biometrics,1993

3. Bradley, P.S., Fayyad, U.M., and Reina, C.A. (1998). Scaling EM (Expectation-Maximization) Clustering to Large Databases, Microsoft Research.

4. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis;Fraley;Comput. J.,1998

5. Extensions to the k-means algorithm for clustering large data sets with categorical values;Huang;Data Min. Knowl. Discov.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3