Canonical Density Matrices from Eigenstates of Mixed Systems

Author:

Kourehpaz Mahdi,Donsa Stefan,Lackner Fabian,Burgdörfer Joachim,Březinová IvaORCID

Abstract

One key issue of the foundation of statistical mechanics is the emergence of equilibrium ensembles in isolated and closed quantum systems. Recently, it was predicted that in the thermodynamic (N→∞) limit of large quantum many-body systems, canonical density matrices emerge for small subsystems from almost all pure states. This notion of canonical typicality is assumed to originate from the entanglement between subsystem and environment and the resulting intrinsic quantum complexity of the many-body state. For individual eigenstates, it has been shown that local observables show thermal properties provided the eigenstate thermalization hypothesis holds, which requires the system to be quantum-chaotic. In the present paper, we study the emergence of thermal states in the regime of a quantum analog of a mixed phase space. Specifically, we study the emergence of the canonical density matrix of an impurity upon reduction from isolated energy eigenstates of a large but finite quantum system the impurity is embedded in. Our system can be tuned by means of a single parameter from quantum integrability to quantum chaos and corresponds in between to a system with mixed quantum phase space. We show that the probability for finding a canonical density matrix when reducing the ensemble of energy eigenstates of the finite many-body system can be quantitatively controlled and tuned by the degree of quantum chaos present. For the transition from quantum integrability to quantum chaos, we find a continuous and universal (i.e., size-independent) relation between the fraction of canonical eigenstates and the degree of chaoticity as measured by the Brody parameter or the Shannon entropy.

Funder

WWTF

Austrian Science Fund

FWF doctoral college

International Max Planck Research School of Advanced Photon Science

Vienna Scientific Cluster

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference107 articles.

1. Boltzmann, L. (1896). Vorlesungen über Gastheorie, Verlag Johann Ambrosius Barth.

2. Huang, K. (1988). Statistical Mechanics, Wiley.

3. Arnold, V.I. (1979). Mathematical Methods of Classical Mechanics, Springer.

4. Lichtenberg, A.J., and Lieberman, M.A. (1991). Regular and Chaotic Dynamics, Springer.

5. Quantum statistical mechanics in a closed system;Deutsch;Phys. Rev. A,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3