Genome-Wide Identification and Expression Analyses of the Aquaporin Gene Family in Passion Fruit (Passiflora edulis), Revealing PeTIP3-2 to Be Involved in Drought Stress

Author:

Song Shun,Zhang Dahui,Ma Funing,Xing Wenting,Huang Dongmei,Wu Bin,Chen Jian,Chen Di,Xu Binqiang,Xu Yi

Abstract

Aquaporins (AQPs) in plants can transport water and small molecules, and they play an important role in plant development and abiotic stress response. However, to date, a comprehensive study on AQP family members is lacking. In this study, 27 AQP genes were identified from the passion fruit genome and classified into four groups (NIP, PIP, TIP, SIP) on the basis of their phylogenetic relationships. The prediction of protein interactions indicated that the AQPs of passion fruit were mainly associated with AQP family members and boron protein family genes. Promoter cis-acting elements showed that most PeAQPs contain light response elements, hormone response elements, and abiotic stress response elements. According to collinear analysis, passion fruit is more closely related to Arabidopsis than rice. Furthermore, three different fruit ripening stages and different tissues were analyzed on the basis of the transcriptome sequencing results for passion fruit AQPs under drought, high-salt, cold and high-temperature stress, and the results were confirmed by qRT-PCR. The results showed that the PeAQPs were able to respond to different abiotic stresses, and some members could be induced by and expressed in response to multiple abiotic stresses at the same time. Among the three different fruit ripening stages, 15 AQPs had the highest expression levels in the first stage. AQPs are expressed in all tissues of the passion fruit. One of the passion fruit aquaporin genes, PeTIP3-2, which was induced by drought stress, was selected and transformed into Arabidopsis. The survival rate of transgenic plants under drought stress treatment is higher than that of wild-type plants. The results indicated that PeTIP3-2 was able to improve the drought resistance of plants. Our discovery lays the foundation for the functional study of AQPs in passion fruit.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3