The Role of IgG Fc Region N-Glycosylation in the Pathomechanism of Rheumatoid Arthritis

Author:

Gyebrovszki BalázsORCID,Ács András,Szabó DánielORCID,Auer Felícia,Novozánszki Soma,Rojkovich Bernadette,Magyar Anna,Hudecz Ferenc,Vékey Károly,Drahos LászlóORCID,Sármay GabriellaORCID

Abstract

Anti-citrullinated protein antibodies (ACPAs) are involved in the pathogenesis of rheumatoid arthritis. N-glycosylation pattern of ACPA-IgG and healthy IgG Fc differs. The aim of this study is to determine the relative sialylation and galactosylation level of ACPAs and control IgG to assess their capability of inducing TNFα production, and furthermore, to analyze the correlations between the composition of Fc glycans and inflammatory markers in RA. We isolated IgG from sera of healthy volunteers and RA patients, and purified ACPAs on a citrulline-peptide column. Immunocomplexes (IC) were formed by adding an F(ab)2 fragment of anti-human IgG. U937 cells were used to monitor the binding of IC to FcγR and to trigger TNFα release determined by ELISA. To analyze glycan profiles, control IgG and ACPA-IgG were digested with trypsin and the glycosylation patterns of glycopeptides were analyzed by determining site-specific N-glycosylation using nano-UHPLC-MS/MS. We found that both sialylation and galactosylation levels of ACPA-IgG negatively correlate with inflammation-related parameters such as CRP, ESR, and RF. Functional assays show that dimerized ACPA-IgG significantly enhances TNFα release in an FcγRI-dependent manner, whereas healthy IgG does not. TNFα production inversely correlates with the relative intensities of the G0 glycoform, which lacks galactose and terminal sialic acid moieties.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3