The Serum Hepatitis B Virus Large Surface Protein as High-Risk Recurrence Biomarker for Hepatoma after Curative Surgery

Author:

Tsai Hung-Wen,Lee Yun-Ping,Yen Chia-Jui,Cheng Kuang-Hsiung,Huang Chien-Jung,Huang Wenya

Abstract

Chronic hepatitis B (CHB) virus infection is the most important cause of HCC and is also associated with tumor progression. The development of viral biomarkers for HCC prognosis is critical in evaluating relative risks to recurrence in the CHB HCC patients. We report that the large HBV surface protein (LHBS) expression increased in the tumors, implicating that it played a significant role in tumor development. To detect the LHBS in serum and evaluate its association with HCC progression, we developed a sandwich ELISA method for LHBS. The mouse monoclonal antibodies for the pre-S1, pre-S2, and HBS regions were in-house generated and constructed into a chemiluminescent sandwich ELISA system, which allowed sensitive and quantitative measurement of the protein. Using this ELISA assay, we estimated the expression of LHBS in CHB and HCC patients. We found that the serum LHBS level was correlated with the HBS but not the viral titer in serum, indicating that HBV surface proteins’ expression does not mainly depend on viral replication. Moreover, both serum LHBS and HBS levels were lower in the HCC patients than in the CHB. The liver LHBS signals, detected by immunohistochemical staining, showed significant correlations with the serum LHBS and HBS levels. In addition, the more elevated serum LHBS but not HBS level was significantly associated with cirrhosis and worse disease-free and overall survival rates, based on the multivariate analysis. Conclusion: LHBS plays a specific role in tumor progression and is an independent parameter associated with HCC recurrence. Serum LHBS represents a novel noninvasive biomarker for HCC patients with a worse prognosis after surgery.

Funder

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3