AG1478 Elicits a Novel Anti-Influenza Function via an EGFR-Independent, GBF1-Dependent Pathway

Author:

Zhou Xu,Zhu Lingxiang,Bondy Cheryl,Wang JunORCID,Luo Qianwen,Chen Yin

Abstract

Current options for preventing or treating influenza are still limited, and new treatments for influenza viral infection are urgently needed. In the present study, we serendipitously found that a small-molecule inhibitor (AG1478), previously used for epidermal growth factor receptor (EGFR) inhibition, demonstrated a potent activity against influenza both in vitro and in vivo. Surprisingly, the antiviral effect of AG1478 was not mediated by its EGFR inhibitory activity, as influenza virus was insensitive to EGFR blockade by other EGFR inhibitors or by siRNA knockdown of EGFR. Its antiviral activity was also interferon independent as demonstrated by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout approach. Instead, AG1478 was found to target the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1)–ADP-ribosylation factor 1 (ARF1) system by reversibly inhibiting GBF1 activity and disrupting its Golgi-cytoplasmic trafficking. Compared to known GBF1 inhibitors, AG1478 demonstrated lower cellular toxicity and better preservation of Golgi structure. Furthermore, GBF1 was found to interact with a specific set of viral proteins including M1, NP, and PA. Additionally, the alternation of GBF1 distribution induced by AG1478 treatment disrupted these interactions. Because targeting host factors, instead of the viral component, imposes a higher barrier for developing resistance, GBF1 modulation may be an effective approach to treat influenza infection.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference52 articles.

1. Advances in the development of influenza virus vaccines

2. Compounds with anti-influenza activity: Present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs;Gasparini;J. Prev. Med. Hyg.,2014

3. Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance

4. Fields Virology;Fields,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3