Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components

Author:

Yoosefzadeh-Najafabadi MohsenORCID,Eskandari MiladORCID,Torabi Sepideh,Torkamaneh DavoudORCID,Tulpan DanORCID,Rajcan Istvan

Abstract

A genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS methods are suffering from. Using sophisticated mathematical methods such as machine learning (ML) algorithms may address this issue and advance the implication of this valuable genetic method in applied plant-breeding programs. In this study, we evaluated the potential use of two ML algorithms, support-vector machine (SVR) and random forest (RF), in a GWAS and compared them with two conventional methods of mixed linear models (MLM) and fixed and random model circulating probability unification (FarmCPU), for identifying MTAs for soybean-yield components. In this study, important soybean-yield component traits, including the number of reproductive nodes (RNP), non-reproductive nodes (NRNP), total nodes (NP), and total pods (PP) per plant along with yield and maturity, were assessed using a panel of 227 soybean genotypes evaluated at two locations over two years (four environments). Using the SVR-mediated GWAS method, we were able to discover MTAs colocalized with previously reported quantitative trait loci (QTL) with potential causal effects on the target traits, supported by the functional annotation of candidate gene analyses. This study demonstrated the potential benefit of using sophisticated mathematical approaches, such as SVR, in a GWAS to complement conventional GWAS methods for identifying MTAs that can improve the efficiency of genomic-based soybean-breeding programs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3