Abstract
For developing an effective interventional approach and treatment modality for PM2.5, the effects of omega-3 fatty acids on alleviating inflammation and attenuating lung injury induced by inhalation exposure of PM2.5 were assessed in murine models. We found that daily oral administration of the active components of omega-3 fatty acids, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) effectively alleviated lung parenchymal lesions, restored normal inflammatory cytokine levels and oxidative stress levels in treating mice exposed to PM2.5 (20 mg/kg) every 3 days for 5 times over a 14-day period. Especially, CT images and the pathological analysis suggested protective effects of DHA and EPA on lung injury. The key molecular mechanism is that DHA and EPA can inhibit the entry and deposition of PM2.5, and block the PM2.5-mediated cytotoxicity, oxidative stress, and inflammation.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献