Abstract
The extraction of physical information about the subsurface ocean from surface information obtained from satellite measurements is both important and challenging. We introduce a back-propagation neural network (BPNN) method to determine the subsurface temperature of the North Pacific Ocean by selecting the optimum input combination of sea surface parameters obtained from satellite measurements. In addition to sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS) and sea surface wind (SSW), we also included the sea surface velocity (SSV) as a new component in our study. This allowed us to partially resolve the non-linear subsurface dynamics associated with advection, which improved the estimated results, especially in regions with strong currents. The accuracy of the estimated results was verified with reprocessed observational datasets. Our results show that the BPNN model can accurately estimate the subsurface (upper 1000 m) temperature of the North Pacific Ocean. The corresponding mean square errors were 0.868 and 0.802 using four (SSH, SST, SSS and SSW) and five (SSH, SST, SSS, SSW and SSV) input parameters and the average coefficients of determination were 0.952 and 0.967, respectively. The input of the SSV in addition to the SSH, SST, SSS and SSW therefore has a positive impact on the BPNN model and helps to improve the accuracy of the estimation. This study provides important technical support for retrieving thermal information about the ocean interior from surface satellite remote sensing observations, which will help to expand the scope of satellite measurements of the ocean.
Funder
National Natural Science Foundation of China
National Program on Global Change and Air–Sea Interaction
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献