Multi-Layer Energy Management and Strategy Learning for Microgrids: A Proximal Policy Optimization Approach

Author:

Fang Xiaohan12,Hong Peng2,He Shuping12,Zhang Yuhao2,Tan Di2

Affiliation:

1. Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China

2. School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China

Abstract

An efficient energy management system (EMS) enhances microgrid performance in terms of stability, safety, and economy. Traditional centralized or decentralized energy management systems are unable to meet the increasing demands for autonomous decision-making, privacy protection, global optimization, and rapid collaboration simultaneously. This paper proposes a hierarchical multi-layer EMS for microgrid, comprising supply layer, demand layer, and neutral scheduling layer. Additionally, common mathematical optimization methods struggle with microgrid scheduling decision problem due to challenges in mechanism modeling, supply–demand uncertainty, and high real-time and autonomy requirements. Therefore, an improved proximal policy optimization (PPO) approach is proposed for the multi-layer EMS. Specifically, in the centrally managed supply layer, a centralized PPO algorithm is utilized to determine the optimal power generation strategy. In the decentralized demand layer, an auction market is established, and multi-agent proximal policy optimization (MAPPO) algorithm with an action-guidance-based mechanism is employed for each consumer, to implement individual auction strategy. The neutral scheduling layer interacts with other layers, manages information, and protects participant privacy. Numerical results validate the effectiveness of the proposed multi-layer EMS framework and the PPO-based optimization methods.

Funder

National Natural Science Foundation of China

Natural Science Research Project of Universities in Anhui Province

Opening Foundation of Key Laboratory of Intelligent Computing and Signal Processing (Anhui University), Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3