Identifying Weak Transmission Lines in Power Systems with Intermittent Energy Resources and DC Integration

Author:

He Anqi1,Cao Jijing2,Li Shangwen3,Gong Lianlian1,Yang Mingming1,Hu Jiawei4

Affiliation:

1. College of Railway Locomotive and Rolling Stock, Wuhan Railway Vocational College of Technology, Wuhan 430205, China

2. Wuhan EMU Depot of China Railway Wuhan Group Co., Ltd., Wuhan 430061, China

3. State Grid Hubei Electric Power Co., Ltd., Wuhan Power Supply Company, Wuhan 430013, China

4. Central China Branch of State Grid Corporation of China, Wuhan 430072, China

Abstract

Nowadays, intermittent energy resources, such as wind turbines, and direct current (DC) transmission have been extensively integrated into power systems. This paper proposes an identifying method for weak lines of novel power systems with intermittent energy resources and DC lines integration, which aims to provide decision making for control strategies of novel power systems and prevent system blackouts. First, from the perspective of power system safety and stability, a series of risk indicators for the risk assessment of vulnerable lines is proposed. Then, lines in the system are tripped one by one. The calculation method for the proposed risk indicators is introduced. The impact of each line outage on system safety and stability can be fairly evaluated by these proposed risk indicators. On this basis, each risk assessment indicator is weighted to obtain a comprehensive risk assessment indicator, and then the risk caused by each line outage on the system can be quantified efficiently. Finally, the test system of a modified IEEE-39 bus system with wind farms and DC lines integration is used to verify the applicability of the proposed method, and the effectiveness of the proposed method is also demonstrated by comparing with existing methods.

Funder

Hubei Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3