Simulation and Energy Analysis of Integrated Solar Combined Cycle Systems (ISCCS) Using Aspen Plus

Author:

Al Mhanna Najah M.1ORCID,Al Hadidi Islam1,Al Maskari Sultan2

Affiliation:

1. Engineering Department, German University of Technology in Oman, Muscat 1816, Oman

2. Chair of Public Law, with Focus on Environmental and Planning Law, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany

Abstract

The aim of this research is to simulate and analyze a combined power cycle (Steam turbine and gas turbine cycles) by studying the effect of changing the natural gas flow rate on the developed power. Therefore, reducing the amount of used natural gas in the combustion chamber of the gas turbine cycle from 9.2 to 4 kg/s showed a significant drop in the power produced by the gas turbine, i.e., from 123.7 to 57.7 MW. Additionally, this change in the combusted natural gas amount affected the heat recovered in both heat recovery steam generators (HRSGs), i.e., from 219.79 to 100.35 MW, respectively. Consequently, the amount of generated steam in the high pressure HRSGs and the power developed in the steam turbine changed from 60.88 to 27.79 kg/s and from 56.39 to 27.13 MW, respectively. A heat exchanger (HFHX) utilizing a heating fluid was used as an external source of energy to compensate the reduction in the generated heat and to increase the amount of generated steam up to 157.32 kg/s, which keeps the power plant capacity at 180 MW. Existing combined local plant data were used in this study and were simulated in Aspen Plus software V11. A sensitivity analysis was made to optimize the cycle operating conditions that use less natural gas and produce the same amount of power.

Publisher

MDPI AG

Reference25 articles.

1. Bolivar, N. (2019). Physics of Energy Sources, Arcler Press.

2. King, G.C. (2018). Physics of Energy Sources, Wiley.

3. Techno-economic analysis of a novel gas-fired power plant integrated with solar thermal energy;Chung;Energy,2021

4. Prospects and challenges of renewable energy in the MENA region;Matar;Renew. Sustain. Energy Rev.,2020

5. Multi-objective optimization of integrated solar combined cycle power plant using har-mony search algorithm;Tiwari;Renew. Energy,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3