Influence of the Processing Conditions on the Rheology and Heat of Decomposition of Solution Processed Hybrid Nanocomposites and Implication to Sustainable Energy Storage

Author:

Andezai Andekuba1ORCID,Iroh Jude O.1ORCID

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

This study investigates the properties of solution-processed hybrid polyimide (PI) nanocomposites containing a variety of nanofillers, including polyaniline copolymer-modified clay (PNEA), nanographene sheets (NGSs), and carbon nanotube sheets (CNT-PVDFs). Through a series of experiments, the flow behavior of poly(amic acid) (PAA) solution and PAA suspension containing polyaniline copolymer-modified clay (PNEA) is determined as a function of the shear rate, processing temperature, and polymerization time. It is shown that the neat PAA solution exhibits a complex rheological behavior ranging from shear thickening to Newtonian behavior with increasing shear rate and testing temperature. The presence of modified clay in PAA solution significantly reduced the viscosity of PAA. Differential scanning calorimetry (DSC) analysis showed that polyimide–nanographene sheet (PI NGS) nanocomposites processed at a high spindle speed (100 rpm) have lower total heat of decomposition, which is indicative of improved fire retardancy. The effect of processing temperature on the specific capacitance of a polyimide–CNT-PVDF composite containing electrodeposited polypyrrole is determined using cyclic voltammetry (CV). It is shown that the hybrid composite working electrode material processed at 90 °C produces a remarkably higher overall stored charge when compared to the composite electrode material processed at 250 °C. Consequently, the specific capacitance obtained at a scan rate of 5 mV/s for the hybrid nanocomposite processed at 90 °C is around 858 F/g after one cycle, which is about 6.3 times higher than the specific capacitance of 136 F/g produced by the hybrid nanocomposite processed at 250 °C. These findings show that the properties of the hybrid nanocomposites are remarkably influenced by the processing conditions and highlight the need for process optimization.

Publisher

MDPI AG

Reference61 articles.

1. Ioan, S., Filimon, A., Hulubei, C., and Popovici, D. (2012, January 16–18). Rheological properties of some complex polymers containing alicyclic structures. Proceedings of the HEFAT 2012, St Julian’s, Malta.

2. Structural Effect of Polyimide Precursors on Highly Thermally Conductive Graphite Films;Jin;ACS Omega,2022

3. Controlling the structure and rheology of polyimide/nanoclay composites by condensation polymerization;Wang;J. Appl. Polym. Sci.,2012

4. Applications of polyimide coatings: A review;Hicyilmaz;SN Appl. Sci.,2021

5. Origin of rheological behavior and surface/interfacial properties of some semi-alicyclic polyimides for biomedical applications;Ioan;Polym. Bull.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3