New External Design Temperatures and Geospatial Models for Poland and Central Europe for Building Heat Load Calculations

Author:

Narowski Piotr1ORCID,Heim Dariusz2ORCID,Mijakowski Maciej1ORCID

Affiliation:

1. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland

2. Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland

Abstract

This article proposes new values and geospatial models of winter and summer external design temperatures for designing buildings’ heating, ventilation, and air-conditioning (HVAC) systems. The climatic design parameters applicable in Poland for the sizing of these installations are approximately 50 years old and do not correspond to Poland’s current climate. New values of climatic design parameters were determined following the methods described in European standards and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Handbook of Fundamentals. The determined climatic design parameters, particularly the winter and summer external design temperatures, were compared with those currently in force by law in Poland. The external air design dry-bulb temperatures presented in the article were developed based on meteorological and climatic data from the years 1991–2020 from two data sources: synoptic data from the Institute of Meteorology and Water Management (IMWM) in Poland and reanalysis models of the ERA5 database of the European Centre for Medium-Range Weather Forecasts (ECMWF). According to ASHRAE, with 99.6% and 0.4% frequency of occurrence, external air design dry-bulb temperatures for winter and summer were used to develop mathematical geospatial models of external design temperatures for the Central Europe area with Poland’s territory in the centre part. Scattered data from 667 meteorological stations were interpolated to 40,000 uniform mesh points using a biharmonic spline interpolation method to develop these models. Linear regression and ANOVA analysis for the ERA5-generated data from 900 checkpoint data items were used to estimate the correctness of these models. Verified models were used to calculate winter and summer external design temperature isolines presented together with colour space representation on Mercator projected maps of Central Europe.

Funder

Warsaw University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3