Effect of Using Moisture-Buffering Finishing Materials and DCV Systems on Environmental Comfort and Energy Consumption in Buildings

Author:

Kaczorek Dobrosława1,Basińska Małgorzata2ORCID

Affiliation:

1. Thermal Physics, Acoustics and Environment Department, Building Research Institute (ITB), Filtrowa 1 Str., 00-611 Warsaw, Poland

2. Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4 Str., 61-131 Poznań, Poland

Abstract

One of the technical solutions to improve indoor thermal comfort and reduce energy consumption in buildings is the use of demand-controlled ventilation (DCV) systems. The choice of the control method becomes more important when the walls in the room are finished with moisture-buffering materials. This study explores the impact of four DCV system control scenarios (control of temperature, relative humidity, and carbon dioxide concentration for two different supply airflows to the room) combined with various indoor moisture-buffering materials (gypsum board and cement–lime plaster) on the variability of indoor air quality parameters, thermal comfort, and energy. The analysis was performed by computer simulation using WUFI Plus v.3.1.0.3 software for whole-building hydrothermal analysis. Control-based systems that maintain appropriate relative humidity levels were found to be the most favourable for localised comfort and were more effective in terms of energy consumption for heating and cooling without humidification and dehumidification. This research also revealed that the moisture-buffering effect of finishing materials can passively contribute to enhancing indoor air quality, regardless of the room’s purpose. However, higher energy consumption for heating was observed for better moisture-buffering materials.

Funder

Ministry of Education and Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3