Verification of the Accuracy of Cervical Spinal Cord Injury Prognosis Prediction Using Clinical Data-Based Artificial Neural Networks

Author:

Kishikawa Jun12,Kobayakawa Kazu2ORCID,Saiwai Hirokazu2,Yokota Kazuya1,Kubota Kensuke1,Hayashi Tetsuo1,Morishita Yuichiro1,Masuda Muneaki1,Sakai Hiroaki1,Kawano Osamu1,Nakashima Yasuharu2,Maeda Takeshi1

Affiliation:

1. Department of Orthopedic Surgery, Spinal Injuries Center, Fukuoka 820-8508, Japan

2. Department of Orthopedic Surgery, Kyushu University, Fukuoka 812-8582, Japan

Abstract

Background: In patients with cervical spinal cord injury (SCI), we need to make accurate prognostic predictions in the acute phase for more effective rehabilitation. We hypothesized that a multivariate prognosis would be useful for patients with cervical SCI. Methods: We made two predictive models using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs). We adopted MLR as a conventional predictive model. Both models were created using the same 20 clinical parameters of the acute phase data at the time of admission. The prediction results were classified by the ASIA Impairment Scale. The training data consisted of 60 cases, and prognosis prediction was performed for 20 future cases (test cohort). All patients were treated in the Spinal Injuries Center (SIC) in Fukuoka, Japan. Results: A total of 16 out of 20 cases were predictable. The correct answer rate of MLR was 31.3%, while the rate of ANNs was 75.0% (number of correct answers: 12). Conclusion: We were able to predict the prognosis of patients with cervical SCI from acute clinical data using ANNs. Performing effective rehabilitation based on this prediction will improve the patient’s quality of life after discharge. Although there is room for improvement, ANNs are useful as a prognostic tool for patients with cervical SCI.

Funder

JSPS KAKENHI

JST FOREST Program

The General Insurance Association of Japan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3