Integration of an InSAR and ANN for Sinkhole Susceptibility Mapping: A Case Study from Kirikkale-Delice (Turkey)

Author:

Nefeslioglu Hakan A.ORCID,Tavus BesteORCID,Er Melahat,Ertugrul Gamze,Ozdemir Aybuke,Kaya Alperen,Kocaman SultanORCID

Abstract

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3